The Scroogefactor is PageRank divided by out-degree. It can be used as an approximate estimator for the Bradley--Terry model.

Scroogefactor(C, alpha = 1, sort = FALSE)

Arguments

C

a square matrix

alpha

a damping factor

sort

logical. Reorder the indices in descending order of Scroogefactor score

Value

A vector equivalent to PageRank per reference, scaled to sum to one

Details

Pinksi and Narin (1976) first proposed this metric as a citation metric called the influence per reference. When applied to citation data, it can be interpreted as the influence per outgoing reference, effectively penalising larger publications and review journals, which have larger combined bibliographies. When applied to sports or games results, it is influence per game lost.

References

Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing & Management, 12(5), 297--312.

See also

Other network centrality estimators: BTscores, BradleyTerry, ILSR, PageRank

Examples

Scroogefactor(citations, alpha = 1, sort = TRUE)
#> JRSS-B AoS Bka JASA JRSS-A Bcs #> 0.129637467 0.064100143 0.056911430 0.055443856 0.035544777 0.034351333 #> SJS JCGS Bern Biost ISR Tech #> 0.032038128 0.031520003 0.030353184 0.028950225 0.025075321 0.024375400 #> AmS CJS AISM StSci JTSA StSin #> 0.023797146 0.021343516 0.020799389 0.020455001 0.019693464 0.019512690 #> StCmp JRSS-C ANZS StataJ LDA StMed #> 0.018277029 0.017204101 0.016219058 0.016153895 0.015975592 0.015942379 #> Envr StNee SPL JABES JSPI EES #> 0.015481649 0.014689126 0.014201014 0.013103574 0.011927699 0.011867634 #> StMod Mtka CmpSt Test JMA Stats #> 0.011629628 0.011399224 0.011348236 0.011155904 0.011075746 0.010253172 #> BioJ JNS CSDA SMMR JSS JSCS #> 0.010023670 0.009670011 0.009646062 0.009208731 0.008576811 0.007460998 #> CSTM JBS CSSC StPap JAS #> 0.006206337 0.005827482 0.004046142 0.003833824 0.003692799